
Making the world’s
decentralised data more
accessible.

Lab Exercise Guide

Table of Contents

Introduction 2

Pre-requisites 2

Exercise 1: Account Balances 2
High level steps 2
Detailed steps 2

Step 1: Initialize your project 2
Step 2: Update the graphql schema 3
Step 3: Update the manifest file (aka project.yaml) 3
Step 4: Update the mappings file 4
Step 5: Generate the associated typescript 4
Step 6: Build the project 5
Step 7: Start the Docker container 5
Step 8: Run a query 5
Bonus 7

1

Introduction
In this exercise, we will take the starter project and focus on using an event handler to
extract the balance of each account.

Pre-requisites
Completion of Module 1

Exercise 1: Account Balances

High level steps

1. Initialise the starter project
2. Update your mappings, manifest file and graphql schema file by removing all the

default code except for the handleEvent function.
3. Generate, build and deploy your code
4. Deploy your code in Docker
5. Query for address balances in the playground

Detailed steps

Step 1: Initialise your project
The first step in creating a SubQuery project is to create a project with the following
command:

$ subql init

Project name [subql-starter]: account-balance

? Select a network family Substrate

? Select a network Polkadot

? Select a template project subql-starter Starter project for

subquery

RPC endpoint: [wss://polkadot.api.onfinality.io/public-ws]:

Git repository [https://github.com/subquery/subql-starter]:

Fetching network genesis hash... done

Author [Ian He & Jay Ji]:

Description [This project can be use as a starting po...]:

Version [1.0.0]:

License [MIT]:

Preparing project... done

account-balance is ready

2

Step 2: Update the graphql schema
The default schema.graphql file contains 5 fields. Rename field2 to account and field3 to
balance. Rename the entity to Account.

Extra: Whenever you update the manifest file, don’t forget to update the reference to field1 in
the mappings file appropriately and to regenerate the code via yarn codegen.

The schema file should look like this:

type Account @entity {

id: ID! #id is a required field

account: String #This is a Polkadot address

balance: BigInt # This is the amount of DOT

}

Step 3: Update the manifest file (aka project.yaml)
The initialisation command also pre-creates a sample manifest file and defines 3 handlers.
Because we are only focusing on Events, let’s remove handleBlock and handleCall from the
mappings file. The manifest file should look like this:

specVersion: 1.0.0

name: account-balance

version: 1.0.0

runner:

node:

name: '@subql/node'

version: '>=1.0.0'

query:

name: '@subql/query'

version: '*'

description: >-

This project can be use as a starting point for developing your

SubQuery

project

repository: 'https://github.com/subquery/subql-starter'

schema:

file: ./schema.graphql

network:

chainId:

'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3'

endpoint: 'wss://polkadot.api.onfinality.io/public-ws'

dictionary:

'https://api.subquery.network/sq/subquery/polkadot-dictionary'

#genesisHash:

3

'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3'

dataSources:

- kind: substrate/Runtime

startBlock: 1

mapping:

file: ./dist/index.js

handlers:

- handler: handleEvent

kind: substrate/EventHandler

filter:

module: balances

method: Deposit

NB: Comment out genesisHash by prefixing with #. This is not required for now.

Step 4: Update the mappings file
The initialisation command pre-creates a sample mappings file with 3 functions,
handleBlock, handleEvent and handleCall. Again, as we are only focusing on handleEvent,
let’s delete the remaining functions.

We also need to make a few other changes. Because the Account entity (formally called the
StarterEntity), was instantiated in the handleBlock function and we no longer have this, we
need to instantiate this within our handleEvent function. We also need to update the
argument we pass to the constructor.

let record = new

Account(event.extrinsic.block.block.header.hash.toString());

The mappingHandler.ts file should look like this:

import {SubstrateEvent} from "@subql/types";

import {Account} from "../types";

import {Balance} from "@polkadot/types/interfaces";

export async function handleEvent(event: SubstrateEvent): Promise<void>

{

const {event: {data: [account, balance]}} = event;

//Create a new Account entity with ID using block hash

let record = new

Account(event.extrinsic.block.block.header.hash.toString());

// Assign the Polkadot address to the account field

record.account = account.toString();

// Assign the balance to the balance field "type cast as Balance"

4

record.balance = (balance as Balance).toBigInt();

await record.save();

}

Step 5: Install the dependencies
Install the node dependencies by running the following commands:

yarn install

OR

npm install

Step 6: Generate the associated typescript
Next, we will generate the associated typescript with the following command:

yarn codegen

OR

npm run-script codegen

Step 7: Build the project
The next step is to build the project with the following command:

yarn build

OR

npm run-script build

This bundles the app into static files for production.

Step 8: Start the Docker container

Run the docker command to pull the images and to start the container.

5

yarn start:docker

Step 9: Run a query

Once the docker container is up and running, which could take a few minutes, open up your
browser and navigate to www.localhost:3000.

This will open up a “playground” where you can create your query. Copy the example below.

query {

accounts(first:10 orderBy:BALANCE_DESC){

nodes{

account

balance

}

}

}

This should return something similar to the following:

{

"data": {

"accounts": {

"nodes": [

{

"account": "13wY4rD88C3Xzd4brFMPkAMEMC3dSuAR2NC6PZ5BEsZ5t6rJ",

"balance": "162804160"

},

{

"account": "146YJHyD5cjFN77HrfKhxUFbU8WjApwk9ncGD6NbxE66vhMS",

"balance": "130775360"

},

{

"account": "146YJHyD5cjFN77HrfKhxUFbU8WjApwk9ncGD6NbxE66vhMS",

"balance": "130644160"

},

{

"account": "146YJHyD5cjFN77HrfKhxUFbU8WjApwk9ncGD6NbxE66vhMS",

"balance": "117559360"

},

{

"account": "12H7nsDUrJUSCQQJrTKAFfyCWSactiSdjoVUixqcd9CZHTGt",

"balance": "117359360"

},

6

http://www.localhost:3000

{

"account": "146YJHyD5cjFN77HrfKhxUFbU8WjApwk9ncGD6NbxE66vhMS",

"balance": "108648000"

},

{

"account": "13wY4rD88C3Xzd4brFMPkAMEMC3dSuAR2NC6PZ5BEsZ5t6rJ",

"balance": "108648000"

},

{

"account": "12zSBXtK9evQRCG9Gsdr72RbqNzbNn2Suox2cTfugCLmWjqG",

"balance": "108648000"

},

{

"account": "15zF7zvdUiy2eYCgN6KWbv2SJPdbSP6vdHs1YTZDGjRcSMHN",

"balance": "108448000"

},

{

"account": "15zF7zvdUiy2eYCgN6KWbv2SJPdbSP6vdHs1YTZDGjRcSMHN",

"balance": "108448000"

}

]

}

}

}

If you have nothing returned, wait a few minutes for your node to index a few blocks.

What we have done here is queried for the balance of DOT tokens for all addresses
(accounts) on the Polkadot mainnet blockchain. We have limited this to the first 10 and
sorted it by the “richest” account holders first.

Bonus
As a bonus, try to aggregate the balances across addresses so you can find the total
balance of an address.

7

