
Making the world’s
decentralised data more
accessible.

Lab Exercise Guide

Table of Contents

Introduction 2

Pre-requisites 2

Exercise 1: Account Transfers (1-to-many) 2
High level steps 2
Detailed steps 2

Step 1: Initialize your project 2
Step 2: Update the graphql schema 3
Step 3: Update the manifest file (aka project.yaml) 3
Step 4: Update the mappings file 4
Step 5: Install the dependencies 7
Step 6: Generate the associated typescript 7
Step 7: Build the project 7
Step 8: Start the Docker container 7
Step 9: Run a query 7

1

Introduction
In these exercises, we will take the starter project and focus on understanding a popular one
to many entity relationships. We will create a project that allows us to query for accounts and
determine how much was transferred to what receiving address.

Pre-requisites
Completion of Module 2

Exercise 1: Account Transfers (1-to-many)

High level steps

1. Initialise the starter project
2. Update your mappings, manifest file and graphql schema file by removing all the

default code except for the handleEvent function.
3. Generate, build and deploy your code
4. Deploy your code in Docker
5. Query for address transfers in the playground

Detailed steps

Step 1: Initialize your project
The first step in creating a SubQuery project is to create a project with the following
command:

$ subql init

Project name [subql-starter]: account-transfers

? Select a network family Substrate

? Select a network Polkadot

? Select a template project subql-starter Starter project for

subquery

RPC endpoint: [wss://polkadot.api.onfinality.io/public-ws]:

Git repository [https://github.com/subquery/subql-starter]:

Fetching network genesis hash... done

Author [Ian He & Jay Ji]:

Description [This project can be use as a starting po...]:

Version [1.0.0]:

License [MIT]:

Preparing project... done

account-transfers is ready

2

Step 2: Update the graphql schema

Create an entity called “Account”. This account will contain multiple transfers. An account
can be thought of as a Polkadot address owned by someone.

Transfers can be thought of as a transaction with an amount, a sender and a receiver. (Let’s
ignore the sender for now). Here, we will obtain the amount transferred, the blockNumber
and who it was sent to, which is also known as the receiver. The schema file should look like
this:

type Account @entity {

id: ID! #this primary key is set as the toAddress

}

type Transfer @entity {

id: ID!

amount: BigInt

blockNumber: BigInt

to: Account! # receiving address

}

Step 3: Update the manifest file (aka project.yaml)
Update the manifest file to only include the handleEvent handler and update the filter method
to Transfer. This is because we only want to work with balance transfer events which will
contain the data for transactions being transferred from one account to another.

specVersion: 1.0.0

name: account-transfers

version: 1.0.0

runner:

node:

name: '@subql/node'

version: '>=1.0.0'

query:

name: '@subql/query'

version: '*'

description: >-

This project can be use as a starting point for developing your

SubQuery

project

repository: 'https://github.com/subquery/subql-starter'

3

schema:

file: ./schema.graphql

network:

chainId:

'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3'

endpoint: 'wss://polkadot.api.onfinality.io/public-ws'

dictionary:

'https://api.subquery.network/sq/subquery/polkadot-dictionary'

#genesisHash:

'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3'

dataSources:

- kind: substrate/Runtime

startBlock: 1

mapping:

file: ./dist/index.js

handlers:

- handler: handleEvent

kind: substrate/EventHandler

filter:

module: balances

method: Transfer

Note the inclusion of a dictionary and the exclusion of the genesisHash

Step 4: Update the mappings file
The initialisation command pre-creates a sample mappings file with 3 functions,
handleBlock, handleEvent and handleCall. As we are only focusing on handleEvent, delete
the remaining functions.

We also need to make a few other changes. Firstly, we need to understand that the
balance.transfer event provides access to an array of data in the following format: [from, to,
value]. This means we can access the values as follows:

const fromAddress = event.event.data[0];

const toAddress = event.event.data[1];

const amount = event.event.data[2];

Next, because the Account entity (formally called the StarterEntity), was instantiated in the
handleBlock function and we no longer have this, we need to instantiate this within our
handleEvent function. However, we need to first test to see if this value is already in our
database. This is because an event can contain multiple transfers to the SAME toAddress.

So we get the toAddress and if it does not exist, we save it to the database.

4

const toAccount = await Account.get(toAddress.toString());

if (!toAccount) {

await new Account(toAddress.toString()).save();

}

Example of the account table in Postgres:

For the Transfer entity object, we set the primary key as the blocknumber+event.idx (which
guarantees uniqueness) and then set the other fields of the Transfer entity object
accordingly.

const transfer = new

Transfer(`${event.block.block.header.number.toNumber()}-${event.idx}`,

);

transfer.blockNumber = event.block.block.header.number.toBigInt();

transfer.toId = toAddress.toString();

transfer.amount = (amount as Balance).toBigInt();

await transfer.save();

Example of transfer table in Postgres:

5

The mappingHandler.ts file should look like this:

import {SubstrateEvent} from "@subql/types";

import {Account, Transfer} from "../types";

import {Balance} from "@polkadot/types/interfaces";

export async function handleEvent(event: SubstrateEvent): Promise<void>

{

{

// The balances.transfer event has the following payload \[from,

to, value\] that we can access

// const fromAddress = event.event.data[0];

const toAddress = event.event.data[1];

const amount = event.event.data[2];

// query for toAddress from DB

const toAccount = await Account.get(toAddress.toString());

// if not in DB, instantiate a new Account object using the

toAddress as a unique ID

if (!toAccount) {

await new Account(toAddress.toString()).save();

}

// instantiate a new Transfer object using the block number and

event.idx as a unique ID

const transfer = new

Transfer(`${event.block.block.header.number.toNumber()}-${event.idx}`,

);

transfer.blockNumber =

event.block.block.header.number.toBigInt();

transfer.toId = toAddress.toString();

transfer.amount = (amount as Balance).toBigInt();

await transfer.save();

}

}

6

Step 5: Install the dependencies
Install the node dependencies by running the following commands:

yarn install

OR

npm install

Step 6: Generate the associated typescript
Next, we will generate the associated typescript with the following command:

yarn codegen

OR

npm run-script codegen

Step 7: Build the project
The next step is to build the project with the following command:

yarn build

OR

npm run-script build

This bundles the app into static files for production.

Step 8: Start the Docker container

Run the docker command to pull the images and to start the container.

yarn start:docker

Step 9: Run a query

Once the docker container is up and running, which could take a few minutes, open up your
browser and navigate to www.localhost:3000.

7

http://www.localhost:3000

This will open up a “playground” where you can create your query. Copy the example below.

query{

accounts(first: 3){

nodes{

id

}

}

}

This will query the account entity returning the id. We have defined the id here as the
“toAddress”, otherwise known as the receiving address. This will return something similar to
the following:

{

"data": {

"accounts": {

"nodes": [

{

"id": "11k5GkWb9npuqWRq5Pyk51RSnRyskPrPtsyoCApteEUjNou"

},

{

"id": "121dZJsfG7uNvszPSpYvBzwnrcF1P4ejjrE1G6FSWHqht5tC"

},

{

"id": "121rwkQAH3yCD1EcaRgc3nELSoZn29RoTtCN55mcN7RkBA66"

}

]

}

}

}

We can also query for all the transfers:

query{

transfers(first: 3){

nodes{

id

amount

blockNumber

}

}

}

8

This will return something similar to the following:

{

"data": {

"transfers": {

"nodes": [

{

"id": "7280565-2",

"amount": "400009691000",

"blockNumber": "7280565"

},

{

"id": "7280566-2",

"amount": "23174700000000",

"blockNumber": "7280566"

},

{

"id": "7280570-5",

"amount": "400000000000",

"blockNumber": "7280570"

}

]

}

}

}

9

The magic lies in the ability to query the account id from within the transfer query. The
example below shows that we are querying for transfers where we have an associated
amount and blockNumber, but we can then link this to the receiving or “to” address as
follows:

query{

transfers(first: 3){

nodes{

id

amount

blockNumber

to{

id

}

}

}

}

The query above returns the following results:

{

"data": {

"transfers": {

"nodes": [

{

"id": "7280565-2",

"amount": "400009691000",

"blockNumber": "7280565",

"to": {

"id": "15kUt2i86LHRWCkE3D9Bg1HZAoc2smhn1fwPzDERTb1BXAkX"

}

},

{

"id": "7280566-2",

"amount": "23174700000000",

"blockNumber": "7280566",

"to": {

"id": "14uh77yjhC3TLAE6KaCLvkjN7yFeUkejm7o7fdaSsggwD1ua"

}

},

{

"id": "7280567-2",

"amount": "3419269000000",

"blockNumber": "7280567",

"to": {

10

"id": "12sj9HTNQ7aiQoRg5wLyuemgvmFcrWeUJRi3aEUnJLmAE56Y"

}

}

]

}

}

}

Looking at the database schema also helps us understand what is happening. The accounts
table is a standalone table containing just receiving addresses (accounts.id). The transfer
table contains “to_id” which is links or points back to accounts.

In other words, one account links to many transfers or more verbosely stated, each unique
Polkadot address that is stored in accounts.id links to one or more than one Polkadot
address that has an associated amount and block number.

11

