
Making the world’s
decentralised data more
accessible.

Lab Exercise Guide

Table of Contents

Introduction 2

Pre-requisites 2

Exercise: Council Proposals (many-to-many) 2
High-level steps 2
Detailed steps 2

Step 1: Initialize your project 2
Step 2: Update the graphql schema 3
Step 3: Update the manifest file (aka project.yaml) 5
Step 4: Update the mappings file 6

handleCouncilProposedEvent 6
handleCouncilVotedEvent 6
ensureCouncillor (helper function) 7

Step 5: Install the dependencies 9
Step 6: Generate the associated typescript 9
Step 7: Build the project 9
Step 8: Start the Docker container 9
Step 9: Run a query 9

Bonus 12

1

Introduction
Here we will take the starter project and focus on understanding how many-to-many
relationships work. We will create a project that allows us to query for the number of votes
that councillors have made and how many votes a given proposal has received.

To learn more about the Polkadot governance structure, please refer to:
https://polkadot.network/blog/a-walkthrough-of-polkadots-governance/

Pre-requisites
Completion of Module 2

Exercise: Council Proposals (many-to-many)

High-level steps

1. Initialise the starter project
2. Update your mappings, manifest file and graphql schema file by removing all the

default code except for the handleEvent function.
3. Generate, build and deploy your code
4. Deploy your code in Docker
5. Query for address balances in the playground

Detailed steps

Step 1: Initialize your project
The first step in creating a SubQuery project is to create a project with the following
command:

~/Code/subQuery$ subql init

Project name [subql-starter]: council-proposal

? Select a network Polkadot

? Select a template project subql-starter Starter project for

subquery

Cloning project... done

RPC endpoint: [wss://polkadot.api.onfinality.io/public-ws]:

Git repository [https://github.com/subquery/subql-starter]:

Fetching network genesis hash... done

Author [Ian He & Jay Ji]:

Description [This project can be use as a starting po...]:

2

Version [0.0.4]:

License [MIT]:

Preparing project... done

council-proposal is ready

Step 2: Update the graphql schema

Let’s first create an entity called “Proposals”. This proposal is an event of type council. In
other words, we are interested in extracting data from the council event. Visit
https://polkadot.js.org/docs/substrate/events#council for more information.

Within the council event, we are going to focus on the “proposed” method. The proposed
method is defined as:

“ A motion (given hash) has been proposed (by given account) with a threshold (given
MemberCount). [account, proposal_index, proposal_hash, threshold]” - source

We can therefore add the following fields: id, index, hash, voteThreshold and block to our
entity.

id => account
index => proposal_index
hash => proposal_hash
voteThreshold => threshold
block => Not part of proposed method but useful to extract

Next, let’s create an entity object called Councillor. This object will simply hold the number of
votes each councillor has made. This can be thought of as a simple table like below:

Finally, let’s create a VoteHistory entity. This will be another council event using the voted
method defined as:

“A motion (given hash) has been voted on by a given account, leaving a tally (yes votes and
no votes given respectively as MemberCount). [account, proposal_hash, voted, yes, no]”

We can therefore add the following fields: id, proposalHash, approvedVote, councillor,
votedYes, votedNo, and block to our entity.

id => account

3

https://polkadot.js.org/docs/substrate/events#council
https://polkadot.js.org/docs/substrate/events#proposedaccountid32-u32-h256-u32
https://polkadot.js.org/docs/substrate/events#council
https://polkadot.js.org/docs/substrate/events#votedaccountid32-h256-bool-u32-u32

proposalHash => Proposal
approvedVote => voted
Councillor => Councillor
votedYes => yes
votedNo => no
block => Not part of proposed method but useful to extract

Note that for proposalHash, we are specifying the type as the proposal entity. We also
introduced a new field called Councillor and gave that a type of Councillor. What this has
effectively done is created a table where these two columns are references to their
respective tables.

This means that the VoteHistory entity or VoteHistory database table can link the Councillor
entity to the Proposal entity thereby creating what can be considered as a many to many
relationship.

A councillor can vote for many proposals and a proposal will have many votes is effectively
what this all means.

The schema file should look like this:

type Proposal @entity {

id: ID!

index: String!

account: String

hash: String

voteThreshold: String

block: BigInt

}

type VoteHistory @entity {

id: ID!

proposalHash: Proposal

approvedVote: Boolean!

councillor: Councillor

votedYes: Int

votedNo: Int

block: Int

}

type Councillor @entity {

id: ID!

numberOfVotes: Int

}

4

Step 3: Update the manifest file (aka project.yaml)
Update the manifest file to only include two Event handlers and update the filter method to
council/Proposed and council/Voted.

specVersion: 0.2.0

name: council-proposal

version: 0.0.4

description: >-

This project can be use as a starting point for developing your

SubQuery

project

repository: 'https://github.com/subquery/subql-starter'

schema:

file: ./schema.graphql

network:

endpoint: 'wss://polkadot.api.onfinality.io/public-ws'

genesisHash:

'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3'

dictionary: https://api.subquery.network/sq/subquery/dictionary-polkadot

dataSources:

- kind: substrate/Runtime

startBlock: 1

mapping:

file: ./dist/index.js

handlers:

- handler: handleCouncilProposedEvent

kind: substrate/EventHandler

filter:

module: council

method: Proposed

- handler: handleCouncilVotedEvent

kind: substrate/EventHandler

filter:

module: council

method: Voted

5

Step 4: Update the mappings file

handleCouncilProposedEvent

This mappings file will contain three functions. Let’s call the first function
“handleCouncilProposedEvent”.

We can access the values of the event with the following code:

const {

event: {

data: [accountId, proposal_index, proposal_hash, threshold],

},

} = event;

Then we instantiate a new Proposal object,

const proposal = new Proposal(proposal_hash.toString());

and then assign each of the events to a variable in the Proposal object and save it.

proposal.index = proposal_index.toString();

proposal.account = accountId.toString();

proposal.hash = proposal_hash.toString();

proposal.voteThreshold = threshold.toString();

proposal.block = event.block.block.header.number.toBigInt();

await proposal.save();

handleCouncilVotedEvent
This function follows a similar format of handleCouncilProposedEvent from above. The event
parameters are first obtained,

const {

event: {

data: [councilorId, proposal_hash, approved_vote, numberYes,

numberNo],

},

} = event;

6

but before storing the values into the voteHistory object, a helper function is used to check if
the councillorId already exists.

await ensureCouncillor(councilorId.toString());

// Retrieve the record by the accountID

const voteHistory = new VoteHistory(

`${event.block.block.header.number.toNumber()}-${event.idx}`

);

ensureCouncillor (helper function)
This helper function checks if the councillor entity exists. If it does NOT exist, a new one is
created and the number of votes is set to zero. Otherwise, the number of votes is
incremented by one.

async function ensureCouncillor(accountId: string): Promise<void> {

// ensure that our account entities exist

let councillor = await Councillor.get(accountId);

if (!councillor) {

councillor = new Councillor(accountId);

councillor.numberOfVotes = 0;

}

councillor.numberOfVotes += 1;

await councillor.save();

The complete mapping files look like the following:

import { SubstrateEvent } from "@subql/types";

import { bool, Int } from "@polkadot/types";

import { Proposal, VoteHistory, Councillor } from "../types/models";

export async function handleCouncilProposedEvent(event: SubstrateEvent):

Promise<void> {

const {

event: {

data: [accountId, proposal_index, proposal_hash, threshold],

},

} = event;

const proposal = new Proposal(proposal_hash.toString());

proposal.index = proposal_index.toString();

proposal.account = accountId.toString();

proposal.hash = proposal_hash.toString();

7

proposal.voteThreshold = threshold.toString();

proposal.block = event.block.block.header.number.toBigInt();

await proposal.save();

}

export async function handleCouncilVotedEvent(event: SubstrateEvent):

Promise<void> {

// logger.info(JSON.stringify(event.event.data));

const {

event: {

data: [councilorId, proposal_hash, approved_vote, numberYes,

numberNo],

},

} = event;

await ensureCouncillor(councilorId.toString());

// Retrieve the record by the accountID

const voteHistory = new VoteHistory(

`${event.block.block.header.number.toNumber()}-${event.idx}`

);

voteHistory.proposalHashId = proposal_hash.toString();

voteHistory.approvedVote = (approved_vote as bool).valueOf();

voteHistory.councillorId = councilorId.toString();

voteHistory.votedYes = (numberYes as Int).toNumber();

voteHistory.votedNo = (numberNo as Int).toNumber();

voteHistory.block = event.block.block.header.number.toNumber();

// logger.info(JSON.stringify(voteHistory));

await voteHistory.save();

}

async function ensureCouncillor(accountId: string): Promise<void> {

// ensure that our account entities exist

let councillor = await Councillor.get(accountId);

if (!councillor) {

councillor = new Councillor(accountId);

councillor.numberOfVotes = 0;

}

councillor.numberOfVotes += 1;

await councillor.save();

}

8

Step 5: Install the dependencies
Install the node dependencies by running the following commands:

yarn install

OR

npm install

Step 6: Generate the associated typescript
Next, we will generate the associated typescript with the following command:

yarn codegen

OR

npm run-script codegen

Step 7: Build the project
The next step is to build the project with the following command:

yarn build

OR

npm run-script build

This bundles the app into static files for production.

Step 8: Start the Docker container

Run the docker command to pull the images and to start the container.

docker-compose pull && docker-compose up

Step 9: Run a query

Once the docker container is up and running, which could take a few minutes, open up your
browser and navigate to localhost:3000.

9

http://localhost:3000

This will open up a “playground” where you can create your query. Copy the example below.

query {

councillors (first: 3 orderBy: NUMBER_OF_VOTES_DESC) {

nodes {

id

numberOfVotes

voteHistories (first: 5) {

totalCount

nodes {

approvedVote

}

}

}

}

}

This will query the councillors, and for each councillor return the number of votes and for
each councillor also return the totalCount and the number of approved votes as can be seen
below.

{

"data": {

"councillors": {

"nodes": [

{

"id": "12hAtDZJGt4of3m2GqZcUCVAjZPALfvPwvtUTFZPQUbdX1Ud",

"numberOfVotes": 61,

"voteHistories": {

"totalCount": 61,

"nodes": [

{

"approvedVote": true

},

{

"approvedVote": true

},

{

"approvedVote": true

},

{

"approvedVote": true

},

{

10

"approvedVote": true

}

]

}

},

{

"id": "1363HWTPzDrzAQ6ChFiMU6mP4b6jmQid2ae55JQcKtZnpLGv",

"numberOfVotes": 60,

"voteHistory": {

"totalCount": 60,

"nodes": [

{

"approvedVote": true

},

{

"approvedVote": true

},

{

"approvedVote": true

},

{

"approvedVote": true

},

{

"approvedVote": true

}

]

}

},

{

"id": "12NLgzqfhuJkc9mZ5XUTTG85N8yhhzfptwqF1xVhtK3ZX7f6",

"numberOfVotes": 56,

"voteHistory": {

"totalCount": 56,

"nodes": [

{

"approvedVote": true

},

{

"approvedVote": true

},

{

"approvedVote": true

},

{

"approvedVote": true

11

},

{

"approvedVote": true

}

]

}

}

]

}

}

}

Bonus
Including a reverse lookup on the schema file will allow us to customise the fields that we
can query on.

type Proposal @entity {

id: ID!

index: String!

account: String

hash: String

voteThreshold: String

block: BigInt

voteHistory_p: [VoteHistory] @derivedFrom(field: "proposalHash")

}

type VoteHistory @entity {

id: ID!

proposalHash: Proposal

approvedVote: Boolean!

councillor: Councillor

votedYes: Int

votedNo: Int

block: Int

}

type Councillor @entity {

id: ID!

numberOfVotes: Int

voteHistory_c: [VoteHistory] @derivedFrom(field: "councillor")

}

12

By adding voteHistory_p and voteHistory_b, voteHistories becomes voteHistory_c for
example in the screenshot below.

13

