
Making the world’s
decentralised data more
accessible.

Lab Exercise Guide

Table of Contents

Introduction 2

Pre-requisites 2
Package manager 2
SubQuery CLI 2
Docker 2

Exercise 1: Hello World 3
High level steps 3
Detailed steps 3

Step 1: Initialise your project 3
Step 2: Update the mappings file 4
Step 3: Update the manifest file (aka project.yaml) 5
Step 4: Update the graphql schema 5
Step 5: Install the dependencies 6
Step 6: Generate the associated typescript 6
Step 7: Build the project 6
Step 8: Start the Docker container 7
Step 9: Run a query 7

1

Introduction
In this lab, students will have the opportunity to become familiar with SubQuery with some
hands-on experience creating a simple Hello World SubQuery project. This project will use
the subql CLI to create an empty project shell, and then code will be provided to query the
Polkadot mainnet for the blockheight. A Docker environment will be used to run this example
for simplicity.

Pre-requisites
You will require the following:

● NPM package manager
● SubQuery CLI (@subql/cli)
● Docker

Package manager
Run the following command in your terminal to install the latest version of node. Node v12 or
higher is required.

brew update

brew install node

node -v
v18.2.0

SubQuery CLI
Install the latest version of the subql cli:

npm install -g @subql/cli

subql -v

@subql/cli/1.0.1 darwin-x64 node-v18.2.0

Docker
Please visit https://docs.docker.com/get-docker/ for instructions on how to install Docker for
your specific operating system.

2

https://docs.docker.com/get-docker/

Exercise 1: Hello World

High level steps

1. Initialise a project
2. Update your mappings
3. Update your manifest file
4. Update your graphql schema file
5. Generate your code
6. Build your code
7. Deploy your code in Docker

Detailed steps

Step 1: Initialise your project
The first step in creating a SubQuery project is to create a project with the following
command:

$ subql init

Project name [subql-starter]: HelloWorld

? Select a network family Substrate

? Select a network Polkadot

? Select a template project subql-starter Starter project for

subquery

RPC endpoint: [wss://polkadot.api.onfinality.io/public-ws]:

Git repository [https://github.com/subquery/subql-starter]:

Fetching network genesis hash... done

Author [Ian He & Jay Ji]: Sean

Description [This project can be use as a starting po...]:

Version [1.0.0]:

License [MIT]:

Preparing project... done

HelloWorld is ready

Note that any text in the square brackets are the default values that will be used if nothing is
provided.

This creates a framework and the following directory structure saving you time.

3

Step 2: Update the mappings file
The initialisation command pre-creates a sample mappings file with 3 functions,
handleBlock, handleEvent and handleCall in src/mappings/mappingHandlers.ts. For this
exercise we will focus on the first function called handleBlock so delete the remaining
functions. The mappingHandler.ts file should look like this:

import {SubstrateExtrinsic,SubstrateEvent,SubstrateBlock} from

"@subql/types";

import {StarterEntity} from "../types";

import {Balance} from "@polkadot/types/interfaces";

export async function handleBlock(block: SubstrateBlock): Promise<void>

{

//Create a new starterEntity with ID using block hash

let record = new StarterEntity(block.block.header.hash.toString());

//Record block number

record.field1 = block.block.header.number.toNumber();

await record.save();

}

4

Step 3: Update the manifest file (aka project.yaml)
The initialisation command also pre-creates a sample manifest file and defines 3 handlers.
Because we have removed handleEvent and handleCall from the mappings file, we have to
remove them from the manifest file as well.

The manifest file should look like this:

specVersion: 1.0.0

name: HelloWorld

version: 1.0.0

runner:

node:

name: '@subql/node'

version: '>=1.0.0'

query:

name: '@subql/query'

version: '*'

description: >-

This project can be use as a starting point for developing your

SubQuery project

repository: 'https://github.com/subquery/subql-starter'

schema:

file: ./schema.graphql

network:

chainId:

'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3'

endpoint: 'wss://polkadot.api.onfinality.io/public-ws'

dictionary:

'https://api.subquery.network/sq/subquery/polkadot-dictionary'

dataSources:

- kind: substrate/Runtime

startBlock: 1

mapping:

file: ./dist/index.js

handlers:

- handler: handleBlock

kind: substrate/BlockHandler

5

Step 4: Update the graphql schema
The default schema.graphql file contains 5 fields. We can remove fields 2 through to 5
because the handleBlock function in the mappings file only uses “field1”.

Extra: Rename field1 to something more meaningful. Eg blockHeight. Note that if you do
this, don’t forget to update the reference to field1 in the mappings file appropriately.

The schema file should look like this:

type StarterEntity @entity {

id: ID! #id is a required field

blockHeight: Int!

}

Step 5: Install the dependencies
Install the node dependencies by running the following commands:

yarn install

OR

npm install

Step 6: Generate the associated typescript
Next, we will generate the associated typescript with the following command:

yarn codegen

OR

npm run-script codegen

You should see a new folder appear with 2 new files.

6

Step 7: Build the project
The next step is to build the project with the following command:

yarn build

OR

npm run-script build

This bundles the app into static files for production.

Step 8: Start the Docker container

Run the docker command to pull the images and to start the container.

docker-compose pull && docker-compose up

Note: You need to have Docker installed as noted in the prerequisite for this to work.

Step 9: Run a query

Once the docker container is up and running, which could take a few minutes, open up your
browser and navigate to www.localhost:3000.

7

http://www.localhost:3000

This will open up a “playground” where you can create your query. Copy the example below.

{

query{

starterEntities(last:10, orderBy: FIELD1_ASC){

nodes{

field1

}

}

}

}

Note: If you renamed field1 something else, modify this query appropriately.

8

