@ SubQuery

Making the world’s
decentralised data more
accessible.

Lab Exercise Guide

@ SubQuery

Table of Contents

Introduction

Pre-requisites
Package manager
SubQuery CLI
Docker

Exercise 1: Listing all transactions for a given address
High level steps
Detailed steps
Step 1: Initialise your project
Step 2: Defining the “shape” of our data
Step 3: Update the manifest file (aka project.yaml)
Step 4: Write your mappings file
Step 5: Generate, build and deploy
Step 6: Run a query

OO0, DWW W®L N NDNDN DN

@ SubQuery

Introduction

In this lab, students will have the opportunity to become familiar with SubQuery with some
hands-on experience creating a SubQuery project to list all transactions for a given address.
This project will use the subqgl CLI to create an empty project shell, and then code will be
provided to query Polkadot mainnet. A Docker environment will be used to run this example
for simplicity.

Pre-requisites

You will require the following:

e NPM package manager
e SubQuery CLI (@subql/cli)
e Docker

Package manager

Run the following command in your terminal to install the latest version of node. Node v12 or
higher is required.

brew update
brew install node

node -v
v18.2.0

SubQuery CLI

Install the latest version of the subq| cli:

npm install -g @subqgl/cli
subqgql -v

@subgl/cli/1.0.1 darwin-x64 node-v18.2.0

Docker
Please visit https://docs.docker.com/get-docker/ for instructions on how to install Docker for

your specific operating system.

https://docs.docker.com/get-docker/

@ SubQuery

Exercise 1: Listing all transactions for a given
address

High level steps

Initialise a project

Define the shape of your data

Update your manifest file

Write your mapping handler
Generate, build and deploy your code
Run a query

oAM=~

Detailed steps

Step 1: Initialise your project

The first step in creating a SubQuery project is to create a project with the following
command:

$ subgl init

Project name [subgl-starter]: subgl-list-transactions

? Select a network family Substrate

? Select a network Polkadot

? Select a template project subqgl-starter Starter project for
subquery

RPC endpoint: [wss://polkadot.api.onfinality.io/public-ws]:
Git repository [https://github.com/subquery/subgql-starter]:
Fetching network genesis hash... done

Author [Ian He & Jay Ji]: Sean

Description [This project can be use as a starting po...]:
Version []:

License [MIT]:

Preparing project... done

subqgl-list-transactions is ready

Note that any text in the square brackets are the default values that will be used if nothing is
provided.

This creates a directory scaffold saving you time.

@ SubQuery

Step 2: Defining the “shape” of our data

Here we want to create a single entity - Transfer.

We design the Transfer entity to contain the amount, and the to and from address.

type Transfer @entity {
id: ID!
amount: BigInt
blockNumber: BigInt

to: String!
from: String!

Step 3: Update the manifest file (aka project.yaml)

The initialisation command also pre-creates a sample manifest file and defines 3 handlers.
Copy the paste the manifest file from below.

specVersion:
name: subqgl-list-transactions
version:
runner:
node:
name: ‘'@subgl/node’
version: '>=1.0.0'
query:
name: ‘'@subqgl/query’
version: '*'
description: >-
This project can be use as a starting point for developing your
SubQuery
project
repository: 'https://github.com/subquery/subgl-starter’
schema:
file: ./schema.graphqgl
network:
chainld:
'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3"’
endpoint: 'wss://polkadot.api.onfinality.io/public-ws'
dictionary:
"https://api.subquery.network/sq/subquery/polkadot-dictionary"
dataSources:
- kind: substrate/Runtime
startBlock:

mapping:

@ SubQuery

file: ./dist/index.js
handlers:
- handler: handleTransfer
kind: substrate/EventHandler

filter:
module: balances
method: Transfer

Here we keep the event handler and the filter as well.

Step 4. Write your mappings file

Copy the code from below to your mappingHandler.ts file.

import {SubstrateEvent} from "@subql/types";
import {Transfer} from "../types";
import {Balance} from "@polkadot/types/interfaces";

export async function handleTransfer(event: SubstrateEvent):
Promise<void> {

const from = event.event.data[9];
const to = event.event.data[1];
const amount = event.event.data[2];

const transfer = new Transfer(
“¢${event.block.block.header.number.toNumber()}-${event.idx} ,

)

transfer.blockNumber = event.block.block.header.number.toBigInt();
transfer.from = from.toString();

transfer.to = to.toString();

transfer.amount = (amount as Balance).toBigInt();

await transfer.save();

Step 5: Generate, build and deploy

Run the following commands:

yarn install
yarn codegen

yarn build
Docker-compose pull && docker-compose up

Step 6: Run a query

Run the following query:

query {
transfers (first:3 orderBy: AMOUNT DESC) {

nodes {
id,
to,
from,
amount,
blockNumber

You should get the following results:

{
"data": {
"transfers": {
"nodes": [
{
"id": "645657-4",
"to": "13SkL2uACPgBzpKBh3d2n5msYNFB2QapAS5vEDeKelLjG2LS3Y",
"from": "13yk62yQYctYsRPXDFvC5WzBtanAsHDasenooLAxKvf5bNkK",
"amount": "102000000000000000",
“blockNumber": "645657"

"id": "645697-3",

"to": "13SkL2uACPgBzpKBh3d2n5msYNFB2QapAS5vEDeKelLjG2LS3Y",
"from": "12WLDL2AXoH3MHr1xj8K4m9rCcRKSWKTUz8A4mX3ah5khJBn",
"amount": "99000000000000000",

@ SubQuery

"blockNumber": "645697"

"id": "303284-59",

"to": "1lvTfju3zruADh7sbBznxWCpircNp9ErzJaPQZKyrUknApRu",
“from": "15j4dg5GzsL1bw2U2AWgeyAk6QTxq43V7ZPbXdAmbVLjvDCK",
"amount": "90000000000000000",

"blockNumber": "303284"

This allows us to see that address
“13SkL2uACPqgBzpKBh3d2n5msYNFB2QapA5vEDeKelLjG2LS3Y” has received 2
transactions of 102,000 and 99,000. Using this address, let’s query for all amounts at this
address:

query {
transfers (filter: {to:
{in:"13SkL2uACPgBzpKBh3d2n5msYNFB2QapA5VvEDeKelLjG2LS3Y" }}){
nodes {
id,
to,
from,
amount,
blockNumber

Below we can see 2 transactions at the above address.

{
"data": {
"transfers": {
"nodes": [

{

"id": "645657-4",

"to": "13SkL2uACPgBzpKBh3d2n5msYNFB2QapAS5vEDeKeljG2LS3Y",
"from": "13yk62yQYctYsRPXDFvC5WzBtanAsHDasenoolLAxKvf5bNkK"
"amount": "102000000000000000",

"blockNumber": "645657"

"amo
"blo

@ SubQuery

45697-3",
"13SkL2uACPgBzpKBh3d2n5msYNFB2QapAS5vEDeKelL jG2LS3Y",
"from": "12WLDL2AXoH3MHr1xj8K4m9rCcRKSWKTUz8A4mX3ah5khIBn",
unt": "99000000000000000" ,

ckNumber": "645697"

Cross check with Polkadot subscan:

https://polk .

n.io/block/64 7?tab=even

Block#645657 m

Timestamp

Status

Hash

Parent Hash

State Root

Extrinsics Root

Validators

Block Time

Spec Version

Extrinsics (4) Events (6)

Event ID

645657-3

645657-4

Docs

Accountld

Accountld

Balance

RARART.R

2020-07-10 15:11:06 (+UTC)

(%) Finalized

0xfeade02430a82a54267112576cadcad7303757 11b11777576908b1280965002d 11
0x763600b07 ab3bdI5921e97 3cCIN242498ddACCOCAB6328911cBE000C5 1602640
0x3c1500700101C090433767 ATeh77 ccBe5e8824e 66593 1 efades52eci2bl2
Ox4afab6156 14D633bb6Eb5CEbAC5!AE353948 166220900daad8908a671980C19e

@ 12RVY2KVBCYBUKXNEDIQWVFasPhURWUDEXGCYXKSEKANNUIG (&

424 days 13 hrs ago

13

Log (2) Comment View All

Hash Action
0xd6f5e....0a532 system(KilledAccount)
0xd6f5e....0a532 balances(Transfer)

Transfer succeeded. \[from, to, value\]
ﬁ 13yk62yQYctYsRPXDFvG5WzBtanAsHDasenooLAXKviSbNKK (@

i'?',. 138KL2uACPgBzpKBh3d2n5msYNFB2QapASvEDeKel jG2LS3Y (@

102,000

NvARfRa N2k enAnRnAiA

https://polkadot.subscan.io/block/645657?tab=event

