
Making the world’s
decentralised data more
accessible.

Lab Exercise Guide

Table of Contents

Introduction 2

Pre-requisites 2
Package manager 2
SubQuery CLI 2
Docker 2

Exercise 1: Listing all transactions for a given address 3
High level steps 3
Detailed steps 3

Step 1: Initialise your project 3
Step 2: Defining the “shape” of our data 4
Step 3: Update the manifest file (aka project.yaml) 4
Step 4: Write your mappings file 5
Step 5: Generate, build and deploy 6
Step 6: Run a query 6

1

Introduction
In this lab, students will have the opportunity to become familiar with SubQuery with some
hands-on experience creating a SubQuery project to list all transactions for a given address.
This project will use the subql CLI to create an empty project shell, and then code will be
provided to query Polkadot mainnet. A Docker environment will be used to run this example
for simplicity.

Pre-requisites
You will require the following:

● NPM package manager
● SubQuery CLI (@subql/cli)
● Docker

Package manager
Run the following command in your terminal to install the latest version of node. Node v12 or
higher is required.

brew update

brew install node

node -v
v18.2.0

SubQuery CLI
Install the latest version of the subql cli:

npm install -g @subql/cli

subql -v

@subql/cli/1.0.1 darwin-x64 node-v18.2.0

Docker
Please visit https://docs.docker.com/get-docker/ for instructions on how to install Docker for
your specific operating system.

2

https://docs.docker.com/get-docker/

Exercise 1: Listing all transactions for a given
address

High level steps

1. Initialise a project
2. Define the shape of your data
3. Update your manifest file
4. Write your mapping handler
5. Generate, build and deploy your code
6. Run a query

Detailed steps

Step 1: Initialise your project
The first step in creating a SubQuery project is to create a project with the following
command:

$ subql init

Project name [subql-starter]: subql-list-transactions

? Select a network family Substrate

? Select a network Polkadot

? Select a template project subql-starter Starter project for

subquery

RPC endpoint: [wss://polkadot.api.onfinality.io/public-ws]:

Git repository [https://github.com/subquery/subql-starter]:

Fetching network genesis hash... done

Author [Ian He & Jay Ji]: Sean

Description [This project can be use as a starting po...]:

Version [1.0.0]:

License [MIT]:

Preparing project... done

subql-list-transactions is ready

Note that any text in the square brackets are the default values that will be used if nothing is
provided.

This creates a directory scaffold saving you time.

3

Step 2: Defining the “shape” of our data
Here we want to create a single entity - Transfer.

We design the Transfer entity to contain the amount, and the to and from address.

type Transfer @entity {

id: ID!

amount: BigInt

blockNumber: BigInt

to: String!

from: String!

}

Step 3: Update the manifest file (aka project.yaml)
The initialisation command also pre-creates a sample manifest file and defines 3 handlers.
Copy the paste the manifest file from below.

specVersion: 1.0.0

name: subql-list-transactions

version: 1.0.0

runner:

node:

name: '@subql/node'

version: '>=1.0.0'

query:

name: '@subql/query'

version: '*'

description: >-

This project can be use as a starting point for developing your

SubQuery

project

repository: 'https://github.com/subquery/subql-starter'

schema:

file: ./schema.graphql

network:

chainId:

'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3'

endpoint: 'wss://polkadot.api.onfinality.io/public-ws'

dictionary:

'https://api.subquery.network/sq/subquery/polkadot-dictionary'

dataSources:

- kind: substrate/Runtime

startBlock: 1

mapping:

4

file: ./dist/index.js

handlers:

- handler: handleTransfer

kind: substrate/EventHandler

filter:

module: balances

method: Transfer

Here we keep the event handler and the filter as well.

Step 4: Write your mappings file
Copy the code from below to your mappingHandler.ts file.

import {SubstrateEvent} from "@subql/types";

import {Transfer} from "../types";

import {Balance} from "@polkadot/types/interfaces";

export async function handleTransfer(event: SubstrateEvent):

Promise<void> {

// Get data from the event

// The balances.transfer event has the following payload \[from, to,

value\]

const from = event.event.data[0];

const to = event.event.data[1];

const amount = event.event.data[2];

// Create the new transfer entity

const transfer = new Transfer(

`${event.block.block.header.number.toNumber()}-${event.idx}`,

);

transfer.blockNumber = event.block.block.header.number.toBigInt();

transfer.from = from.toString();

transfer.to = to.toString();

transfer.amount = (amount as Balance).toBigInt();

await transfer.save();

}

5

Step 5: Generate, build and deploy
Run the following commands:

yarn install

yarn codegen

yarn build

Docker-compose pull && docker-compose up

Step 6: Run a query

Run the following query:

query {

transfers (first:3 orderBy: AMOUNT_DESC) {

nodes {

id,

to,

from,

amount,

blockNumber

}

}

}

You should get the following results:

{

"data": {

"transfers": {

"nodes": [

{

"id": "645657-4",

"to": "13SkL2uACPqBzpKBh3d2n5msYNFB2QapA5vEDeKeLjG2LS3Y",

"from": "13yk62yQYctYsRPXDFvC5WzBtanAsHDasenooLAxKvf5bNkK",

"amount": "102000000000000000",

"blockNumber": "645657"

},

{

"id": "645697-3",

"to": "13SkL2uACPqBzpKBh3d2n5msYNFB2QapA5vEDeKeLjG2LS3Y",

"from": "12WLDL2AXoH3MHr1xj8K4m9rCcRKSWKTUz8A4mX3ah5khJBn",

"amount": "99000000000000000",

6

"blockNumber": "645697"

},

{

"id": "303284-59",

"to": "1vTfju3zruADh7sbBznxWCpircNp9ErzJaPQZKyrUknApRu",

"from": "15j4dg5GzsL1bw2U2AWgeyAk6QTxq43V7ZPbXdAmbVLjvDCK",

"amount": "90000000000000000",

"blockNumber": "303284"

}

]

}

}

}

This allows us to see that address
“13SkL2uACPqBzpKBh3d2n5msYNFB2QapA5vEDeKeLjG2LS3Y” has received 2
transactions of 102,000 and 99,000. Using this address, let’s query for all amounts at this
address:

query {

transfers (filter: {to:

{in:"13SkL2uACPqBzpKBh3d2n5msYNFB2QapA5vEDeKeLjG2LS3Y"}}){

nodes {

id,

to,

from,

amount,

blockNumber

}

}

}

Below we can see 2 transactions at the above address.

{

"data": {

"transfers": {

"nodes": [

{

"id": "645657-4",

"to": "13SkL2uACPqBzpKBh3d2n5msYNFB2QapA5vEDeKeLjG2LS3Y",

"from": "13yk62yQYctYsRPXDFvC5WzBtanAsHDasenooLAxKvf5bNkK",

"amount": "102000000000000000",

"blockNumber": "645657"

7

},

{

"id": "645697-3",

"to": "13SkL2uACPqBzpKBh3d2n5msYNFB2QapA5vEDeKeLjG2LS3Y",

"from": "12WLDL2AXoH3MHr1xj8K4m9rCcRKSWKTUz8A4mX3ah5khJBn",

"amount": "99000000000000000",

"blockNumber": "645697"

}

]

}

}

}

Cross check with Polkadot subscan:
https://polkadot.subscan.io/block/645657?tab=event

8

https://polkadot.subscan.io/block/645657?tab=event

